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Abstract

In this paper, we present a method for the numerical integration of the three-dimensional Green kernel over two

triangles. This method is compared with the results obtained by other algorithms. The comparison proves the efficiency

of the technique in removing the numerical singularity. Furthermore, we provide a numerical algorithm for increasing

the computation accuracy without refining the finite element mesh.
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1. Introduction

This section presents the motivation for integrating the Green Kernel in order to solve an electromag-

netic problem in a three-dimensional case. One of the possible applications of the problem is induction

heating modeling. Rather than presenting the complete model, which can be found in various papers

(see e.g., [1,2,4,5,12–14]), we will focus on the aspects that lead to the integrals we would like to calculate

with precision.
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1.1. An electromagnetic model for induction heating

Induction heating is used for the thermal treatment of metal pieces in many industrial processes such as

brazing, hardening or forging. Inductors in which are flowing alternating currents create a magnetic field

which generates eddy currents in the pieces to be treated. The diffusion of the heat due to these currents
makes possible the heating process.

Such a problem requires to solve a three-dimensional electromagnetic problem which has been worked

out in [1,2,4,12–14]. This model is based on a description of the electromagnetic phenomena inside the con-

ducting pieces and on their borders. The principle of this method consists in taking as unknowns the mag-

netic field in the conductors and the scalar magnetic potential on the edges of the conductors.

In that model, a so called device for induction heating consists in one or several inductors (current loops)

and one or several conductors to be heated (workpieces).

Fig. 1 shows a description of such a system where the inductor is denoted by Xi and the conductor by Xl.
The union of these two open domains is denoted by X. The boundary of X is C (C = oX) and the exterior of

X is Xc ðXc ¼ R3 n �XÞ. The model requires to introduce two cuts Si and Ri in Xi as shown by Fig. 2. The cut

Si has a physical meaning and models the voltage supply, whereas the cut Ri appears for theoretical reasons

(see [1,2,4,12–14]). Considering the geometry in Fig. 1, we make the following assumptions:

� The frequency of the generator being low enough, we neglect current displacements in Maxwell�s
equations.

� The various electromagnetic quantities will be written in their time-harmonic form.

With these approximations, Ampère�s theorem, Faraday�s law and Ohm�s law enable writing the follow-

ing system:
curl~eþ ixl~h ¼~0 in R3 n Si,

curl~h ¼ r~e in X,

curl~h ¼~0 in Xc,

½~e�~n�C ¼ ½~h�~n�C ¼~0 on C,

8>>>><
>>>>:

ð1Þ
where ~e, ~h are, respectively, the electrical and the magnetic field. The quantity r represents the electrical

conductivity and l the magnetic permeability of materials, x is the angular frequency of the current. i is
Fig. 1. A device for induction heating.



Fig. 2. A model for the inductor.
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the imaginary unit number. [f]C is the jump of the quantity f on the interface C, ~n is the external normal

vector to C. All the fields are complex valued.

In order to complete this system, we have to add a relation providing the harmonic voltage supply, V,

applied to the inductor. This voltage is assumed to be given. We have:
Z
c
ð~eþ ix~aÞ �~sdc ¼ V , ð2Þ
where~a is the vector potential defined by~b ¼ l~h ¼ curl~a and div~a ¼ 0 in R3, c is an oriented closed curve

in Xi, and~s is the unit tangent vector along c.

The system (1) and the Eq. (2) yield the equations to be solved so as to obtain the magnetic field in whole

R3.
1.2. The boundary element method

From Maxwell�s equations, a variational formulation of the problem is written in XnSi. After some

manipulation, this variational formulation leads in particular to the computation of an integral over Xc.

Noticing that~h is vanishing Laplacian in Xc, this integral can be decomposed into integrals on the bound-

ary C involving the Steklov–Poincaré operator, also known as the Dirichlet–Neumann operator. This idea

has been developed in [1] for electromagnetism.

The Steklov–Poincaré operator may be represented in function of two integro-differential operators: the
so called simple and double layer potentials. The calculation of these potential yields integrals involving the

Green kernel and its normal derivative.

Once the variational formulation has been obtained in the conductors and their edges, one uses a finite

element technique to discretize the problem in space. We use a H ðcurlÞ [12] finite element method to cal-

culate the magnetic field in X and a P1 finite element method to calculate on C the potential from which

derives the magnetic field. A tetrahedral mesh is used, thus the triangulation of the edges is generated by the

trace of the tetrahedrons on them. This method requires the numerical computation of the two integrals

involving the Green kernel or its normal derivative over two edge triangles of the mesh. These two triangles
may belong either to the same domain or to different ones.
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These integrals correspond from the physical point of view to mutual inductances between the dif-

ferent parts of the system. They have their origin in the Biot–Savart law. This law reveals the Green

kernel and allows the calculation of the magnetic scalar potential. We present in the next section these

two integrals.
1.3. The Green kernel integrals

Our aim is to provide an efficient method for calculating numerically the following integrals,
Z
T y

Z
T x

Gð~x,~yÞdCx dCy , ð3aÞ

Z
T y

qkð~yÞ
Z
T x

oGð~x,~yÞ
onx

dCx dCy , ð3bÞ
where Gð~x,~yÞ is the three-dimensional Green kernel defined by Gð~x,~yÞ ¼ � 1
4p

1
k~x�~yk, i.i being the classical

euclidean norm, and Tx, Ty are two triangles of R3. The function qkð~yÞ, k ¼ 0,1,2 is the P1 basis function

at the node k of the triangle Ty. The normal vector~nx is the unitary normal vector to the triangle Tx, exter-

nal to the conductor to which Tx belongs. These two integrals are known to be convergent although the

integrands are singular. When the two triangles Tx, Ty are far enough from each other, a Gauss–Hammer

integration rule provides good results [8]. Nevertheless, when the triangles grow closer and closer (but still
distinct), the singularity of the integrands manifests itself and makes the numerical integration blow up.

Such a phenomenon has been observed in the case of the numerical simulation of induction heating where

the inductor surrounding the workpiece was near the latter. In practice we will be interested in calculating

the integrals:
I1 ¼
Z
T y

Z
T x

1

k~x�~yk dCx dCy , ð4Þ
and
Ik2 ¼
Z
T y

qkð~yÞ
Z
T x

ð~x�~yÞ:~nx
k~x�~yk3

dCx dCy : ð5Þ
It is possible to find various approaches, for instance in [3,9,10], dealing with the numerical integration of a

singular kernel over a triangle. However, most of them are not based upon exact integration for removing

the singularity. An exact integration method has been developed in [7] and used in [6] in another physical

context. This method is using Gauss integral theorems to transform the integration on a given triangle into

one integration over the boundary of that triangle. We present here an alternative approach based on find-
ing primitives, which leads to faster computations, as our comparisons will show it, and also to an exact

formula in the specific but very important case where the two triangles of integration are overlapped.
2. Reduction of the integration over the reference triangle

2.1. Variable transformation

In order to perform the calculation we introduce the variable transformation ux that transforms the tri-

angle Tx into the reference triangle, T̂ , whose nodes A0, A1, A2 have the coordinates (0,0), (0,1), (1,0) in the

plane of the new variables (n1, g1). To define ux, let�s consider the following application:
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Ux : T̂ ! T x

ðn1,g1Þ7!Uxðn1,g1Þ ¼
P2
j¼0

ujðn1,g1ÞOAj
��!

,
ð6Þ
where
u0ðn1,g1Þ ¼ 1� n1 � g1,

u1ðn1,g1Þ ¼ n1,

u2ðn1,g1Þ ¼ g1:

8><
>: ð7Þ
and OAj
��!

is the vector with origin O, the arbitrary origin of R3, and extremity Aj. Then, ux ¼ U�1
x . In the

same way, we define the transformation, uy that transforms the triangle Ty with nodes B0, B1, B2 into

the reference triangle T̂ in the plane of the new variables (n2, g2), as shown in Fig. 3. In our case we have

to calculate an integral of the form,
I ¼
Z
T y

Z
T x

F ð~x,~yÞdCx dCy , ð8Þ
where F ð~x,~yÞ is a locally singular integrand for ~x ¼~y. Thus, F ð~x,~yÞ is known to be nonsingular when the
triangles over which the integration is done are distinct and the integral to be calculated is well defined.

However, when Tx and Ty have a non void intersection a numerical singularity appears. If Tx is very close

to Ty, then the integrands in (3) are almost singular and numerical integration fails. By making the variable

transformations ux and uy and defining f ðn1,g1,n2,g2Þ ¼ F ð~x,~yÞ, with ~x ¼ Uxðn1,g1Þ and ~y ¼ Uyðn2,g2Þ, the
integral I becomes:
I ¼ 4jT xjjT y j
Z
T̂

Z
T̂
f ðn1,g1,n2,g2Þdn1 dg1 dn2 dg2, ð9Þ
where jTj is the measure of a given triangle T.

2.2. Numerical calculation of I

A pure numerical calculation of I may be done when Tx \ Ty = ; by using a N points Gauss–Hammer

quadrature formula (see [1]):
Fig. 3. The transformations ux and uy.
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I � 4jT xjjT y j
XN
i¼1

XN
j¼1

wiwjf ðni,gi,nj,gjÞ, ð10Þ
where (ni, gi), are the coordinates of the Gauss–Hammer�s points belonging to T̂ and wi, i = 1, . . . ,N, are the

associated weights. However, when Tx \ Ty 6¼ ; or Tx \ Ty = ; with Tx very close to Ty, this formula leads

to difficulties and we suggest another approach to compute I. Let us notice I may be rewritten as:
I ¼ 4jT xjjT y j
Z
T̂
kðn2,g2Þdn2 dg2, ð11Þ
where
kðn2,g2Þ ¼
Z 1

0

Z 1�g1

0

f ðn1,g1,n2,g2Þdn1 dg1, ð12Þ
and
f ðn1,g1,n2,g2Þ ¼
1

kUxðn1,g1Þ � Uyðn2,g2Þk
, ð13Þ
or
f ðn1,g1,n2,g2Þ ¼
ðUxðn1,g1Þ � Uyðn2,g2ÞÞ �~nx
kUxðn1,g1Þ � Uyðn2,g2Þk

3
qkðn2,g2Þ: ð14Þ
The idea is then to calculate exactly k(n2, g2) and to approximate I by a N-points Gauss–Hammer quad-

rature formula:
I � 4jT xjjT y j
XN
i¼1

wikðni,giÞ: ð15Þ
We will call this method a semi-analytic Gauss–Hammer integration with N points.We show in the fol-

lowing section how k(n2, g2) can be computed as well in the case of I1 as in the case of Ik2, k 2 f0,1,2g (see (4)
and (5)).
3. Calculation of k(n2, g2)

We now calculate the integral (12) exactly by finding primitives of the kernels defined by (4) and (5) after

the reduction to the canonical triangle. Finding these primitives with a software such as Maple is not

straightforward. In fact, several cases occur depending on the relative position of the triangles. The prop-

erties given here will allow us to identify these different cases and to check that the formulas we will obtain

are well defined.
3.1. Some useful properties

We will denote by i Æ i the euclidean norm and by AB the distance between two points A and B. We have

for any arbitrary origin O and for Mx 2 Tx, My 2 Ty:
1

k~x�~yk ¼ 1

MxMy
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðOMy
��!� OMx

��!Þ � ðOMy
��!� OMx

��!Þ
q , ð16Þ
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ð~x�~yÞ �~nx
k~x�~yk3

¼ ð~x�~yÞ �~nx
MxMy

3
¼ ðOMx

��!� OMy
��!Þ:~nx

½ðOMy
��!� OMx

��!Þ � ðOMy
��!� OMx

��!Þ�
3
2

, ð17Þ
where~x ¼ OMx
��!

and ~y ¼ OMy
��!

. We also have:
~x ¼ OA0

��!þ n1A0A1

��!þ g1A0A2

��!
, ð18Þ

~y ¼ OB0

��!þ n2B0B1

��!þ g2B0B2

��!
: ð19Þ
Defining the following variables:
b ¼ MyA0

���! �~nx,
d ¼ A0A1

2
,

e ¼ 2A0A1

��! �MyA0

���!
,

g ¼ 2A0A2

��! � A0A1

��!
,

h ¼ MyA0

2
,

j ¼ 2A0A2

��! �MyA0

���!
,

k ¼ A0A2
2
,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð20Þ
the squared distance MxMy
2
and the scalar product ð~x�~yÞ �~nx may be written in function of the variables

n1, g1 as:
MxMy
2 ¼ dn21 þ en1 þ gn1g1 þ hþ jg1 þ kg21, ð21Þ

ð~x�~yÞ �~nx ¼ b: ð22Þ

We may then write the five following properties. Most of them are obvious and can be obtained through

simple geometrical considerations.

Property 1: h i

j2 � 4kh ¼ 4A0A2

2
MyA0

2
cos2ððA0A2

��!
,MyA0

���!ÞÞ � 1 6 0: ð23Þ
Property 2: h i

ðjþ g � e� 2dÞ2 � 4ðd þ k � gÞðd þ hþ eÞ ¼ 4A1A2

2
MyA1

2
cos2ððA1A2

��!
,MyA1

���!ÞÞ � 1 6 0: ð24Þ
Property 3: h i

g � 2

ffiffiffiffiffi
dk

p
¼ 2A0A1A0A2 cos2ðA0A1

��!
,A0A2

��!Þ � 1 6¼ 0, ð25Þ
because the points A0, A1, A2 are not aligned.

Property 4:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip h i

ðg � 2dÞ � 2 dðd þ k � gÞ ¼ 2A0A1 A0A2 cosðA0A1

��!
,A0A2

��!Þ � A0A1 � A1A2 6¼ 0, ð26Þ
because the points A0, A1, A2 are not aligned.
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Property 5:
ð2eg � 4djÞ2 � 4ðg2 � 4dkÞðe2 � 4dhÞ

¼ �64A0A1
4
A0A2

2
MyA0

2
sin2ðA0A2

��!
,A0A1

��!Þsin2ðA0A1

��!
,MyA0

���!Þsin2ðÂ1Þ
h i

6 0, ð27Þ
where Â1 is the dihedral angle between the two planes defined respectively by the points A0, A1, A2 and A0,

A1, My. We get this equality by using the Gauss relations of the spherical trigonometry.

These five properties will be essential for the following sections.
3.2. Case F ð~x,~yÞ ¼ 1
k~x�~yk

We have to distinguish between two situations. The first one is when the pointMy does not belong to the

plane Px defined by the triangle Tx, the second when it belongs to Px.
3.2.1. My does not belong to Px

The first integration over n1 corresponding to the relation (12) yields:
Z 1�g1

0

f ðn1,g1,n2,g2Þdn1 ¼
lnððg � 2dÞg1 þ eþ 2d þ 2

ffiffiffiffiffiffiffiffiffiffiffi
jðg1Þ

p ffiffiffi
d

p
Þ � lnðgg1 þ eþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hþ jg1 þ kg21

p ffiffiffi
d

p
Þffiffiffi

d
p

¼ lnðkA0A1

��!kkMyA1

���!þ g1A1A2

��!kþ A0A1

��! � ðMyA1

���!þ g1A1A2

��!ÞÞ
A0A1

� lnðkA0A1

��!kkMyA0

���!þ g1A0A2

��!kþ A0A1

��! � ðMyA0

���!þ g1A0A2

��!ÞÞ
A0A1

ð28Þ
with
jðg1Þ ¼ ðhþ d þ eÞ þ ðjþ g � e� 2dÞg1 þ ðd þ k � gÞg21: ð29Þ
We shall perform the second integration over g1 by using two variable changes. Under the assumption

that My does not belong to Px, the arguments of the logarithms are always strictly positive for g1 2 [0, 1].

Thus, we have to integrate over that interval two continuous functions of the form

wðg1Þ ¼ lnðAg1 þ Bþ K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cg21 þ Dg1 þ E

p
Þ, where C is a positive number and where D = D2�4CE < 0,

according to properties 1 and 2 with My not belonging to Px. We have:
wðg1Þ ¼ ln Ag1 þ Bþ K
ffiffiffiffi
C

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 þ

D
2C

� �2

� D

4C2

s0
@

1
A: ð30Þ
Performing the first change of variable t ¼ g1 þ D
2C, we obtain:
Z 1

0

wðg1Þdg1 ¼
Z 1þ D

2C

D
2C

ln At � AD
2C

þ Bþ K
ffiffiffiffi
C

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � D

4C2

r !
dt: ð31Þ
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The second change of variable is t ¼
ffiffiffiffiffiffiffiffiffiffi
� D

4C2

q
sinhðuÞ. Thus,
Z 1

0

wðg1Þdg1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
� D

4C2

r Z arcsinh 1þ D
2Cð Þ

ffiffiffiffiffiffiffi
�4C2

D

p� �
arcsinh D

2C

ffiffiffiffiffiffiffi
�4C2

D

p� �
� ln A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
� D

4C2

r
sinhðuÞ � AD

2C
þ Bþ K

ffiffiffiffiffiffiffiffiffiffiffi
� D
4C

r
coshðuÞ

 !
coshðuÞdu: ð32Þ
We then have to integrate a function of the form ~wðuÞ ¼ lnðU coshðuÞ þ V sinhðuÞ þ ZÞ coshðuÞ, where
U, V, Z are real constants with respect to the integration. A primitive of such a function is given by:
Z
~wðuÞdu ¼

VZ � U
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ V 2 � U 2

p� �
ln eu þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2þV 2�U2

p
þZ

VþUð Þ

� �
V 2 � U 2

þ
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ V 2 � U 2

p
þ VZ

� �
ln eu þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2þV 2�U2

p
þZ

VþUð Þ

� �
V 2 � U 2

� Zu
V � U

þ sinhðuÞ lnðU coshðuÞ þ V sinhðuÞ þ ZÞ � 1½ �: ð33Þ
According to properties 3 and 4, we may check that V ± U 6¼ 0. Although this formula has to be used

when My does not belong to Px, it works in the particular case where My belongs to Px and lies inside
the triangle A0, A1, A2, out of the edges. Then, the expression (28) is well defined (no logarithm of zero).

3.2.2. My belongs to Px

Let us consider first the integrals
Kið~yÞ ¼
Z
T i
x

F ð~x,~yÞdCx, Kð~yÞ ¼
Z
T x

F ð~x,~yÞdCx, ð34Þ
where the vertices of triangle T i
x are the points My, Ai, Ai+1, i 2 {0,1,2}, the sums being taken modulo 3.

Performing the first change of variables defined by,~x ¼ ð1� n1 � g1ÞOAi
��!þ n1OMy

��!þ g1OAiþ1

���!
, we obtain
Kið~yÞ ¼ 2jT i
xjntT̂

dn1dg1
kð1� n1Þ~vi � g1~aik

, ð35Þ
with~vi ¼ MyAi
���!

and ~ai ¼ Aiþ1Ai
���!

. Making then the second change of variables n1 = s, g1 = (1�s)t, we get:
Kið~yÞ ¼ 2jT i
xj
Z 1

0

dt
k~vi � t~aik

¼ 2jT i
xj
Z 1

0

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k~aik2t2 � 2~vi �~ait þ k~vik2

q : ð36Þ
The calculation of that integral gives:
Kið~yÞ ¼ 2
jT i

xj
k~aik

ln ð~ai �~viÞ �~ai þ k~ai �~vikk~aikð Þ � ln k~aikk~vik �~vi �~aið Þð Þ: ð37Þ
It is easy to check that this formula is always well defined under our assumptions provided that the tri-

angle T i
x is not degenerate. However, if it is the case jT i

xj ¼ 0 and Kið~yÞ ¼ 0.
At that stage, we may notice that it is always possible to express the domain Tx as a combination of the

domains T 0
x , T

1
x , T

2
x such that Kð~yÞ ¼ �0K0ð~yÞ þ �1K1ð~yÞ þ �2K2ð~yÞ, where �i = ±1, i 2 {0,1,2} an example is

given by the Fig. 4.



Fig. 4. An example of configuration where jT xj ¼ jT iþ2
x j � jT iþ1

x j � jT i
xj.

Fig. 5. Value of I in function of Ii, Ii+1 and Ii+2 depending on the region to which My belongs. At the interfaces, one or two integrals

from Ii, Ii+1 and Ii+2 vanish.
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The values of the �i are the same as in the unique combination from seven possible ones that gives the

area of the triangle Tx in function of the measures of the triangles T i
x, as shown by the Fig. 5:

jT xj ¼ �0jT 0
x j þ �1jT 1

x j þ �2jT 2
x j.

If we consider I i ¼
R
T y
Kið~yÞdCy , Ii is numerically computed by
I i � 2jT y j
XN
j¼1

wjKiðUyðnj2,g
j
2ÞÞ:
Then, I � �0I0 + �1I1 + �2I2.

3.2.3. The particular case when Tx and Ty are the same triangles

In that case, it is possible to obtain an exact formula for I. The pointMy belongs to the triangleTx as shown

by the Fig. 6 and we have I ¼
P2

i¼0

R
T y
Kið~yÞdCy . Using the relation (37), we split this integral in two parts:

2

I ¼
X
i¼0

ðEi
2 � Ei

1Þ, ð38Þ



Fig. 6. Situation when Tx and Ty are the same.
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with
Ei
2 ¼

Z
T y

2
jT i

xj
k~aik

ln ð~ai �~viÞ �~ai þ k~ai �~vikk~aikð ÞdCy , ð39Þ
and
Ei
1 ¼

Z
T y

2
jT i

xj
k~aik

ln k~aikk~vik �~vi �~aið ÞdCy : ð40Þ
Where we consider Ei
2, we perform successively the two changes of variables defined by:

~y ¼ ð1� n1 � g1ÞOAi
��!þ n1OAiþ1

���!þ g1OAiþ2

���!
and n1 = s, g1 = (1�s)t, which gives ~ai �~vi ¼ ð1� sÞð~ai þ t~aiþ2Þ

and 2jT i
xj ¼ 2ð1� sÞtjT xj. We obtain:
Ei
2 ¼ 4

jT xj2

k~aik

Z
~T
ð1� sÞ2t lnð1� sÞ ð~ai þ t~aiþ2Þ �~ai þ k~ai þ t~aiþ2kk~aikð Þdsdt, ð41Þ
where ~T is the unit square in the plane (s, t). The integration gives:
Ei
2 ¼ 4

jT xj2

k~aik
� 5

36
þ k~aikðk~aiþ1k � k~aikÞ

6k~aiþ2k2
þ 1

6
lnðk~aiþ1kk~aik þ k~aik2 þ~ai �~aiþ2Þ

 

þk~aik~ai �~aiþ2

6k~aik3
ln

k~aikk~aiþ2k þ~ai �~aiþ2

k~aiþ1kk~aiþ2k þ k~aiþ2k2 þ~ai �~aiþ2

 !!
: ð42Þ
Where we consider Ei
1, we perform successively the two changes of variables defined by:

~y ¼ ð1� n1 � g1ÞOAiþ1

���!þ n1OAi
��!þ g1OAiþ2

���!
and n1 = s, g1 = (1 � s)t, which gives ~vi ¼ ð1� sÞð~ai þ t~aiþ1Þ

and 2jT i
xj ¼ 2ð1� sÞtjT xj. We obtain:
Ei
1 ¼ 4

jT xj2

k~aik

Z
~T
ð1� sÞ2t lnð1� sÞ k~ai þ t~aiþ1kk~aik � ð~ai þ t~aiþ1Þ �~aið Þdsdt: ð43Þ
The integration gives:
Ei
1 ¼ 4

jT xj2

k~aik
� 5

36
þ k~aikðk~aik � k~aiþ2kÞ

6k~aiþ2k2
þ 1

6
lnðk~aiþ2kk~aik � k~aik2 �~ai �~aiþ1Þ

 

þk~aik~ai �~aiþ1

6k~aiþ1k3
ln

k~aiþ1kk~aiþ2k þ k~aiþ1k2 þ~ai �~aiþ1

k~aikk~aiþ1k þ~ai �~aiþ1

 !!
: ð44Þ
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Summing over i, we get the final formula:
I ¼ 2

3
jT xj2

X
ði,j,kÞ2F

 
n2i � pik

n3i
lnðpik þ n2i þ ninjÞ �

1

ni
lnð�pij � n2i þ ninkÞ

þpjk
1

n3j
þ 1

n3k

 !
lnðpjk þ njnkÞ �

pij
n3i

lnðpij þ n2i þ ninkÞ
!
, ð45Þ
where: F ¼ fð0,1,2Þ; ð1,2,0Þ; ð2,0,1Þg, ni ¼ k~aik and pij ¼~ai �~aj.

3.3. Case F ð~x,~yÞ ¼ ð~x�~yÞ:~nx
k~x�~yk3 q

kð~yÞ

We have to calculate the integral:
Z 1

0

Z 1�g1

0

f ðn1,g1,n2,g2Þdn1 dg1 ¼
Z 1

0

Z 1�g1

0

bqkðn2,g2Þ
ðdn21 þ en1 þ gn1g1 þ hþ jg1 þ kg21Þ

3
2

dn1 dg1, ð46Þ
The function qk(n2, g2) is constant with respect to (n1,g1); it is not restrictive to consider qk = 1. Then, we

split the integration in two parts such that:
Z 1�g1

0

b

ðdn21 þ en1 þ gn1g1 þ hþ jg1 þ kg21Þ
3
2

dn1 ¼ Q1 þ Q2, ð47Þ
where
Q1 ¼ 2
bð2d � gÞg1 � bð2d þ eÞ

zðg1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd þ k � gÞg21 þ ðg þ j� e� 2dÞg1 þ eþ d þ h

p , ð48Þ

Q2 ¼ 2
bgg1 þ be

zðg1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kg21 þ jg1 þ h

p , ð49Þ
with
zðg1Þ ¼ g2 � 4dk
� �

g21 þ �4djþ 2egð Þg1 þ e2 � 4dh: ð50Þ
In order to perform the second integration we are led to find the integral of a function of the form:
wðg1Þ ¼
bg1 þ c

ðng21 þ lg1 þ mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rg21 þ sg1 þ t

p : ð51Þ
We may consider a classification based upon several cases induced by the values of the quantities

s2 � 4rt, the discriminant of rg21 þ sg1 þ t and l2 � 4nm, the discriminant of ng21 þ lg1 þ m, in relation with

the properties 1, 2 and 5.

3.3.1. Case 1: s2�4rt = 0

When this case occurs, it means according to properties 1 and 2 that My belongs to the plane defined by

the points A0, A1, A2. Then, the coefficient b in (48) and (49) is zero and Q1 = Q2 = 0. Thus:
Z 1

0

wðg1Þdg1 ¼ 0: ð52Þ
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3.3.2. Case 2: s2�4rt < 0

In order to perform the exact integration in this case let us first explicit f and 1, the roots of the equation
ng21 þ lg1 þ m ¼ 0, and two other related quantities, / and w:
f ¼ �l�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4nm

p

2n
, ð53Þ

1 ¼ �lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4nm

p

2n
, ð54Þ

/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr12 þ s1þ tÞ

p
, ð55Þ

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðrf2 þ sfþ tÞ

q
: ð56Þ
subcase 1: l2 � 4nm = 0

According to property 5, this means thatMy belongs toPx. Then, like previously, the coefficient b in (48)

and (49) is equal to zero and Q1 = Q2 = 0. Thus:
Z 1

0

wðg1Þdg1 ¼ 0: ð57Þ
subcase 2: l2 � 4nm < 0, / 6¼ 0 and w 6¼ 0

Then, f and 1are the complex conjugated roots of ng21 þ lg1 þ m ¼ 0 but are not the roots of
rg21 þ sg1 þ t ¼ 0. Using Maple we get a primitive of w:
Z
wðg1Þdg1 ¼

ffiffiffi
2

p ln
w2þðsþ2rfÞðg1�fÞþ

ffiffi
2

p
w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rg2

1
þsg1þt

p
g1�f

� �
ðbfþ cÞ

nð1� fÞw �
ffiffiffi
2

p ln
/2þðsþ2r1Þðg1�1Þþ

ffiffi
2

p
/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rg2

1
þsg1þt

p
g1�1

� �
ðb1þ cÞ

nð1� fÞ/ :

ð58Þ
We may check under our assumptions that this expression is well defined (no divisions by zero) for

g1 2 [0, 1]. We have the difference of two complex quantities, which gives a real value after combining
the conjugated expressions.

subcase 3: l2 � 4nm < 0, / = 0 and w = 0

The assumptions of the present subcase mean that f and 1are not only the complex conjugated roots of

ng21 þ lg1 þ m, but also the complex conjugated roots of rg21 þ sg1 þ t. Thus, the expression (51) has to be

rewritten as:
wðg1Þ ¼
1

n
ffiffi
r

p bg1 þ c

ðg21 � Sg1 þ P Þ
3
2

, ð59Þ
where S ¼ fþ �f and P ¼ f�f. A primitive of w is then given by:
Z
wðg1Þdg1 ¼

2

n
ffiffi
r

p �ðbS þ 2cÞg1 þ cS þ 2bP

ðS2 � 4P Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 � Sg1 þ P

p : ð60Þ
This formula is always well defined in that case because n 6¼ 0, r 6¼ 0 and S2 � 4P < 0, which implies

g21 � Sg1 þ P > 0 for any g1 2 [0,1].
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3.4. Conclusion of this section

We were led to consider several cases in order to perform an exact integration to find k(n2, g2) for the
computation of I1 and Ik2. In each one we gave the formula to be used. These formulas have no more numer-

ical singularities and may be integrated safely by a Gauss–Hammer quadrature rule.
4. Comparisons between numerical and semi-analytic Gauss–Hammer integration

In this section, we make numerical experiments with the geometrical configuration presented by the

Fig. 7. In that case the triangles Tx and Ty have the same shape and lie in two distinct parallel planes,

one triangle over an other such that the distance between these two triangles may be defined as the dis-

tance between these planes. When the distance decreases to zero, the overlapping of the triangles becomes
maximal so that the numerical singularities should be extreme. Let h be the distance between the two

triangles and a0 be the parameter defined in the next section. We compare the calculation of the integrals

of kind I1 and I02 versus the dimensionless variable h/a0 by different numerical methods and show the

improvement obtained by the semi-analytical Gauss–Hammer integration in removing the numerical sin-

gularity. Details about the other numerical methods are available in references [8,11]. We also give cal-

culation time cost comparisons.

4.1. Comparisons between different numerical methods

We compare the following methods in order to compute numerically I of the relation (15): Gauss–

Hammer quadrature formula with N = 3 points (GH3) and N = 9 points (GH9), adaptive double
Fig. 7. The configuration of Tx and Ty for numerical experiments.



62 A. Masserey et al. / Journal of Computational Physics 205 (2005) 48–71
exponential quadrature (ADEXP), semi-analytic Gauss–Hammer quadrature formula with N = 3 points

(SAGH3) and N = 9 points (SAGH9), the exact integration method used in [6,7], based on boundary inte-

gration (EBI).

We chose as a reference for comparisons two methods: a method using the one-dimensional adaptive

double exponential quadrature, because it is known to handle very well the kernels having local removable
singularities (see for instance [11] for the double exponential transformation in numerical analysis), and

EBI an alternative exact integration method from which we should get the same results. However, unlike

in [6] where the numerical integration over the second triangle is done by the use of one-dimensional quad-

rature formulas, we combine the use of EBI with the two-dimensional Gauss–Hammer quadrature formu-

las with N = 9 points (EBI9) for the integration over that second triangle.

We apply the double exponential algorithm to the exact formula obtained by the first integration in (12),

this formula still not removing the numerical singularities. We required ten digits of precision in order to

compute this integral with accuracy, the second double integration being performed by a Gauss–Hammer
rule with N = 9 points.

The results comparing all the methods except EBI9 are presented on Fig. 8 for I1 and Fig. 9 for I02 (see (4)
and (5) for the definition). In both cases the upper graph is a zoom of the lower one. Fig. 10 is devoted to

the comparison between SAGH9 and EBI9 for the computation of I0 and I02. For these comparisons the

coordinates of the points corresponding to the corners of the two triangles are: A0(�a, 0,0), A1(a, 0,0),

A2(0,a, 0), B0(�a, 0,h), B1(a, 0,h), B2(0,a,h). We took a = a0 = 5 · 10�3. The dimensionless ratio h/a0 varies

in the interval [2 · 10�4,2].

Figs. 8 and 9 show that the semi-analytical method does not blow up when h/a0 tends to zero and gives
values in accordance with those obtained by the adaptive double exponential quadrature, whereas the pure

numerical Gauss–Hammer method is diverging when h/a0 tends to zero. However, we can see that for the

two kinds of integrals, I1 and I02, the various methods give similar values when h/a0 is greater than 1, for that

particular geometrical configuration.

In addition, it is possible to check that I1 converges to the value calculated by the exact formula for over-

lapped triangles, i.e., I1(0) = 3.5611 · 10�7 when h/a0 tends to zero, and that I02 converges to zero when h/a0
tends to zero, as it is indicated by the the definition of this integral.

To compare SAGH9 with EBI9, we implemented the formulas given in the appendix of [6]. Fig. 10 shows
that the results obtained by SAGH9 and EBI9 are the same, as expected.

These two integrals are functions of the parameter a and the distance h, such that we may write

I1 = I1(a,h) and I02 ¼ I02ða,hÞ. If we want to deduce their values for any couple (a, h) from the values calcu-

lated with (a0, h), we may use the following properties:
I1ðka,khÞ ¼ k3I1ða,hÞ, I1ðka,hÞ ¼ k3I1ða, hkÞ,
I02ðka,khÞ ¼ k2I02ða,hÞ, I02ðka,hÞ ¼ k2I02ða, hkÞ,

(
ð61Þ
where k is a strictly positive factor. Thus, if we want to know the values of these integrals for a given ratio h/

a, we have to multiply the values given by Fig. 8 by the conversion factor k to the power 3 and the values

given by Fig. 9 by the conversion factor k to the power 2.

Examining the time cost related with these two methods, we notice that the ratio between a Gauss–Ham-

mer quadrature method with N = 3 points and N = 9 points is about 9, which corresponds to the ratio of
the number of loops for computation between the two methods. The same thing holds for the semi-analytic

Gauss–Hammer method.

The adaptive double exponential quadrature method ([11]) is very expensive in time, in particular be-

cause ten digits of precision were required in order to approximate with a good accuracy the exact value

obtained for the integral over Tx.



Fig. 8. Comparisons between different numerical methods and relative associated time costs for I1.
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Fig. 9. Comparisons between different numerical methods and relative associated time costs for I02.
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Comparing the time costs between semi-analytic and pure Gauss–Hammer methods, we can see for I02,
with N = 9 points, the semi-analytic Gauss–Hammer method is 23% faster than a pure Gauss–Hammer

method, whereas it is 40% slower in the case of I1.



Fig. 10. Comparisons between SAGH9 and EBI9 for the computation of I0 and I02 and relative associated time costs.
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Comparing now SAGH9 with EBI9, we get that SAGH9 is 3.4 times faster for the computation of I0 and

4.5 times faster for the computation of I02. This can be explained by the differences between the formulas

obtained in the two methods even if they give the same results.

The time cost of the semi-analytic Gauss–Hammer method is related to the complexity of the formula

obtained by exact integration. However, the semi-analytic method reduces considerably the calculation
time when the computation of the exact formula becomes faster than the computation of the nested sum

of the pure numerical integration, which happens when the number of quadrature points is increased.

In practice, we would like to perform our computations using the fastest and the most accurate

method. In a general configuration of the triangles, there are no exact formulas to compare with numer-

ical calculations. However, the semi-analytical Gauss–Hammer quadrature method improves the compu-

tation error by removing the numerical singularity and cancelling one quadrature rule, with a

computation time of the same order compared to the pure quadrature methods we tested. But this

improvement may not be satisfactory. Thus, we present in the sequel a method allowing to obtain a bet-
ter accuracy of the computation.
5. Improvement of the computation accuracy

In the previous sections, we have shown how it was possible to remove the singularities in the numerical

integrations by using partial exact integrations. After the exact integration there is still a pure numerical one

to be computed. The resulting error is not known in the three-dimensional case unlike in the one-dimen-
sional one where error estimations exist. Due to the lack of an exact formula enabling comparisons, except

when the two integration triangles are the same, we are led to chose an algorithmic method for efficient

computation. Inspired by the one-dimensional case, we have chosen to keep the number of Gauss–Hammer

points constant. It is well known in the case of the numerical integration of a one-dimensional singular ker-

nel that it is better to increase the number of integration intervals rather than the number of Gauss–Legen-

dre points to achieve a given precision. Thus, the number of quadrature points was fixed to N = 9 and the

integration triangle was subdivided into sub-triangles in a particular manner. We describe in this chapter

this subdivision algorithm allowing to increase the precision. To show the efficiency of the method we make
a comparison in the case where the two triangles of integration are the same for the integration of the Green

kernel, the only case for which we have an exact formula.
5.1. Decomposition of the integration by subdivision of the triangle T̂

We explain here how we subdivide the reference triangle to decompose the integration. Fig. 11 shows the

subdivision method for the first step.

Let us consider the integration of a continuous function k over the reference triangle T̂ . If we denote by
TA the triangle determined by the points O(0,0), A(0,1), Jð1

2
, 1
2
Þ and by TB the triangle determined by the

points O(0,0), B(1,0), Jð1
2
, 1
2
Þ, we may write:
K ¼
Z
T̂
kðn,gÞdndg ¼

Z
TA

kðn,gÞ dndgþ
Z
TB

kðn,gÞdndg: ð62Þ
Considering the mappings
UA :T̂ ! T A

ðn0,g0Þ7!UAðn0,g0Þ ¼ Ju0ðn0,g0Þ þ Au2ðn0,g0Þ,
ð63Þ
and



Fig. 11. Transformations mapping the triangles TA and TB to T̂ .
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UB :T̂ ! T B

ðn0,g0Þ7!UBðn0,g0Þ ¼ Ju0ðn0,g0Þ þ Bu2ðn0,g0Þ,
ð64Þ
inducing two variable transformations, we have:
Z
TA

kðn,gÞdndg ¼ jT̂ j
Z
T̂
k � UAðn0,g0Þdn0 dg0, ð65Þ
and
 Z
TB

kðn,gÞdndg ¼ jT̂ j
Z
T̂
k � UBðn0,g0Þdn0 dg0: ð66Þ
Then, the two integrals above, being defined over the reference triangle, may be integrated by a Gauss–

Hammer quadrature formula applied to the functions k � UA or k � UB. The subdivision procedure may be

continued until the wanted accuracy is reached. Thus, by iterating this process P times (P P 1), we get
K ¼ KP ¼ jT̂ jP
X
P2AP

Z
T̂
k � UPð1Þ � UPð2Þ � � � � UPðPÞðnPP ,gPP Þdn

P
P dg

P
P , ð67Þ
whereAP is the set of mappings from the set {1,. . .,P} to the set {A,B} and ðnPn ,gPn Þn¼1,...,P is the sequence of

variables due to the variable transformations induced by a givenP 2 AP . The relation between ðnPn ,gPn Þ and
ðnPnþ1,g

P
nþ1Þ can be derived by writing the mappings UA and UB in a matrix form. Let us define for that pur-

pose the following quantities:
MA ¼ 1

2

�1 �1

�1 1

� �
,

MB ¼ 1

2

�1 1

�1 �1

� �
,



Table

Table

P

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Exact
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Y ¼ 1

2

1

1

� �
,

XP
n ¼ nPn

gPn

 !
:

Then from (63) and (64) we have:
XP
n ¼ MPðnþ1ÞXP

nþ1 þ Y , n ¼ 0, . . . ,P � 1, XP
0 ¼

n

g

� �
: ð68Þ
Fig. 12. Triangles and quadrature points distribution for P = 2, N = 9.

1

showing the convergence of the subdivision method to the exact value

Semi-analytical value

2.850104132017379

2.845615828568151

2.841283391873457

2.839460514466428

2.838225797090046

2.837714948869154

2.837390629062305

2.837256027562511

2.837172989130881

2.837138477096164

2.837117472659868

2.837108736937710

2.837103455224714

2.837101257829896

2.837099933576150

2.837099382544410

2.837099051002786

2.837098913034472

2.837098830089292

2.837098795570917

value 2.837098756400005
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We deduce from the previous relation that
XP
0 ¼ MP

n X
P
n þ V P

n , n ¼ 0, . . . ,P , ð69Þ

where ðMP

n Þn¼0,...,P and ðV P
n Þn¼0,...,P are two sequences defined by:
MP
nþ1 ¼ MP

n MPðnþ1Þ, n ¼ 0, . . . ,P � 1, MP
0 ¼

1 0

0 1

� �
, ð70Þ
and
V P
nþ1 ¼ MP

n Y þ V P
n , n ¼ 0, . . . ,P � 1, V P

0 ¼
0

0

� �
: ð71Þ
Fig. 12 shows the distribution of the triangles and the quadrature points after P = 2 steps of the subdi-

vision method.

5.2. Numerical experiment

We present below a numerical experiment showing the efficiency of the subdivision method, where the

algorithm presented in the previous subsection has been implemented recursively. We consider the situation

given by the Fig. 7 with h = 0 and a = 1. We compare the exact value computed by the expression (45) with
Fig. 13. Evolution of the discrepancy d versus P.
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SAGH9 using the method described in the previous section. Table 1 shows the evolution of the value ob-

tained by the semi-analytical method versus P, the number of subdivision steps, with 16 digits of precision.

We may check when P increases that the precision increases too. The computed value tends to the exact

one. Let us consider the discrepancy d defined by:
d ¼ j~KP � ~KP�1j
~KP�1

, P ¼ 1,2,3, . . . , ð72Þ
where ~KP is an approximation of KP obtained with numerical integration. The Fig. 13 shows the evolution

of d versus N. A linear interpolation yields that ln(d) may be considered as an affine function of P, P P 2,

with a good approximation (see Fig. 13). d < 10�q, q being an integer, means that q first digits of the numer-

ical value are stabilized. Thus, although the relative error between ~K1 and ~K0 is about 0.16%, the graph

shows that 10�3 < d < 10�2 meaning the two first digits are stabilized, which could not be enough for a

given required precision. For P = 19, only eight digits are stabilized. Between each level, the computation

time doubles. Extrapolating the relation between d and P, we get that we should have P = 47 to get q = 16
digits stabilized, which corresponds to the machine double precision. However, the computation time be-

comes 247 times the computation time for P = 0.

The computation time depends also on the platforms that are used to perform it and in the algorithmic

methods (sequential or parallel computing). A sensitive advantage is that the method does not require mesh

subdivision, as the triangle subdivision is included in the integration method. A compromise has to be

found between the acceptable computation time and the accuracy required.
6. Conclusion

We derived in this paper a method allowing to calculate integrals of the kind I1 and Ik2 without numerical

singularities. This method requires the exact analytic calculation of double integrals. We have shown the

efficiency of the method in removing these numerical singularities.

The developed semi-analytic method is not symmetric for the calculation of I1, unlike the Gauss–Ham-

mer quadrature. It depends on the triangle over which the exact integration is performed. The greater is the

triangle, the greater is the error for a pure numerical integration with a given number of Gauss–Hammer
points. Thus, since the method is hybrid one using a Gauss–Hammer quadrature combined with an exact

integration, the exact integration must be done over the largest of the two triangles so as to achieve the best

accuracy.

We presented a subdivision method allowing to improve this accuracy without requiring mesh subdivi-

sion. This method leads to a compromise between accuracy and calculation time requirements. It gives

satisfactory results in the case of the electromagnetic problem which motivated this work.

Finally, we mention that a great part of this work has been done using Maple releases 6.0 to 8.0, aiming

to put the different kernels on a form allowing formal integration.
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[10] G. Hämerlin, in: Numerical Integration Proceedings of the Conference, vol. ISNM 57, Birkhäuser Verlag, 1981.
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